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Approximate Loop Transfer Recovery Method
for Designing Fixed-Order Compensators

Anthony J. Calise* and J. V. R. Prasadt
Georgia Institute of Technology, Atlanta, Georgia

An approach is outlined for designing fixed-order dynamic compensators for multivariable time-invariant
linear systems, based on minimizing a linear quadratic performance index. The formulation is done in an output
feedback setting that exploits an observer canonical form to represent the compensator dynamics. The formula-
tion also precludes the use of direct feedback of the plant output. The main contribution lies in defining a
method for penalizing the states of the plant and of the compensator, and for choosing the distribution on initial
conditions so that the loop transfer matrix approximates that of a full-state feedback design. When linear
quadratic regulator theory is used to do the full-state feedback design, the approach can result in good gain and
phase margin characteristics. Two examples are given to illustrate the effectiveness of the approach. The first
treats the problem of pointing a flexible structure, and the second is a helicopter flight control problem using
a tenth-order model for the fuselage and rotor dynamics. Both of the examples considered in this paper are for
nonsquare plants.

Introduction

LINEAR quadratic regulator (LQR) synthesis methods
have guaranteed stability margins. Unfortunately, this re-

quires full-state feedback. It has been shown that the loop
transfer properties of an LQR design for square, minimum
phase plants can be recovered via an asymptotic design
method.1 This method relies on a cheap control formulation
with a subset of the compensator dynamics becoming in-
finitely fast. It is often stated that the order of the compensa-
tor can later be reduced by discarding the fast modes; how-
ever, it is not clear how this can be accomplished without
introducing direct feedthrough of the measured variables. It is
generally good practice to avoid having direct feedthrough of
sensor outputs to improve robustness and reduce the effect of
sensor noise at high frequency. Aside from robustness issues,
the order of the resulting compensator when designed for
large-order systems may prove unwarranted.

Optimal output feedback design of fixed-order compensa-
tors,2 introduced in the early 1970s, has received limited atten-
tion because of numerous difficulties associated with the de-
sign approach. Part of the difficulty lies in the fact that the
compensator representation initially proposed was over-
parameterized; that is, the compensator formulation lacked a
predefined structure, which invariably results in convergence
problems when numerical optimization of the design is at-
tempted. Several authors have adopted canonical structures
that result in a minimal parameterization.3'4 In this paper, the
parameterization of Ref. 4 is used because it yields a conve-
nient form when the problem is reformulated as a static gain
optimal output feedback problem.

The other major objections to optimal output feedback
design are that there are no guarantees on stability margins
and few guidelines for penalizing plant states and compensa-
tor states to improve either performance or robustness. The
major contribution in this paper is to present a formulation in
which the objective of the fixed-order compensator design is
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to approximate the loop characteristics of a full-state design.
Thus, much like the full-order compensator design case, a
two-step design is implied—full-state feedback followed by
approximate loop transfer recovery.

An outline of the paper is as follows. First, the problem
formulation using the observer canonical structure of Ref. 4 is
reviewed. Then, the procedure for penalizing the plant and
compensator states and for selecting the initial distribution on
the plant states to approximately recover the properties of
a full-state design is presented. Finally, two design examples
are presented. The first treats the problem of pointing a flex-
ible structure, and the second is a helicopter flight control
problem using a tenth-order model for the fuselage and rotor
dynamics.

by

Canonical Output Feedback Formulation
It has been shown4 that for a multivariable system described

(1)

(2)

a fixed-order compensator without direct feedthrough of the
output can be formulated in observer canonical form as

u = -H°z,

where
° = blockdiag {[0...0 1]̂  / = !,. .„m]
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In Eqs. (3-5), N and Pz are free parameter matrices with
dimensions (ncxp) and (ncxm), respectively. The dimen-
sions of H° and P° are defined by the observability indices of
the compensator, which are chosen to satisfy
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The augmented system matrices Plant
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define an optimal output feedback problem with the quadratic
performance index

-4S:
where the augmented state vector is

x'=[jt/z']

The control uc in Eq. (4) is defined as

uc = - GOt

(11)

(12)

(13)

and is used only in designing the compensator parameters,
which are packed in the columns of G. The main advantage to
this formulation lies in the fact that the problem has been
converted to one of constant gain, limited state feedback, and
the number of free parameters is the minimum needed to
represent a strictly proper (but otherwise arbitrary) transfer
function matrix. The necessary conditions for optimality5'6
require the solution of the triple {G,K,L } satisfying

A1
CK+KAC + Q + C'G'RGC = 0

for a stable closed-loop system matrix

AC=A-BGC

In Eq. (15),

(14)

(15)

(16)

(17)

(18)

is the variance matrix associated with the distribution assumed
for the initial conditions. A block diagram illustrating the
controller structure is given in Fig. 1.

One major disadvantage to an optimal output feedback
formulation is that numerical methods must be used in solving
Eqs. (14-16). A recent survey of computational methods for
parametric LQ problems can be found in Ref. 7. Most of these
methods generate a sequence of feedback gains (Gk) that, it is
hoped, converge to a local minimizer of the cost function. The
simplest case arises when all of the elements of G are opti-
mized; however, many of the methods can be extended to the
case in which only some of the elements of G are optimized,
when an elimination of variables technique is used.8 The most
successful numerical methods are those that generate a se-
quence of monotonically decreasing cost function values. As-
sociated with this problem is the choice of an initially stabiliz-
ing feedback gain (G0), which is also addressed in Ref. 7.
Because the solution is in general not unique, it is possible to
converge to different locally minimizing solutions, depending
on the choice of GQ. Thus, in using any particular method of
solution, the designer should keep these issues in mind.

Fig. 1 Controller structure in observer canonical form.

For the examples presented in this paper, the solutions were
obtained for a variety of starting values of G0, and they were
all found to converge to essentially the same solution. In
general, our experience has been that rate of convergence and
uniqueness of solution is strongly dependent on how the state
and control weightings are chosen in Eq. (11). As a general
observation, it was found that when the weightings were de-
fined, as outlined in the next section, convergence was greatly
improved over other (more arbitrary) methods of weight selec-
tion. The convergent algorithm given in Ref. 9 was used to
generate the numerical results.

A second possible disadvantage lies in the fact that one does
not know how to specify the order of the compensator at the
outset. In addition, the observability indices in (*>/) influence
the structure of the compensator. In general, we have found
very little sensitivity to the choice of indices. Our general
approach has been to start with the lowest possible order
compensator (nc = m), which requires p/ = l, and to observe
the effect that increasing nc has on the state penalty portion of
the index of performance. In the next section, we show that
this represents a measure of the accuracy to which we are able
to recover the loop characteristics of a full-state feedback
design.

One advantage to the canonical form presented here is that
G is completely free; that is, all of the elements of G are
optimized, and an elimination of variables is not required. A
second advantage is that all of the elements of//0 are specified
by the order of the compensator and the choice of observabil-
ity indices. This is essential to the loop transfer recovery
procedure to be presented in the next section.

Loop Recovery Formulation
Full-state feedback design is often used as a first step in

designing an output feedback controller for multivariable sys-
tems. A variety of methods exist, such as LQR theory, pole
placement, eigenvalue/eigenvector assignment, model follow-
ing control, and decoupling control design. The most popular
method is LQR design. It is well known that this approach
also yields guaranteed gain and phase margins when measured
at the plant input.10

The full-state and output feedback control structures are
illustrated in Fig. 2. The objective in observer-based controller
design is to estimate the plant states and to use the estimated
states in place of the actual states. This results in a higher
order system where closed-loop eigenvalues and eigenvectors
of the full-state design are preserved, and the compensator
merely adds its own dynamics to the response. When the
compensator is designed based on loop transfer recovery, it is
also possible to recover the gain- and phase-margin properties
of the full-state design. This amounts to suitably choosing the
weighting matrices in a dual LQR formulation for the ob-
server design. Both full-state and observer design problems are
decoupled.

In fixed-order compensator design, the notion of state esti-
mation is not present. However, it should be recognized that,
as long as the loop transfer properties of a full-state design can
be recovered to a sufficient degree of accuracy, the closed loop
eigenvalues should contain a set of eigenvalues and eigenvec-
tors that approximate those of the full-state design. More
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Fig. 2 Comparison of controller structures.

important, the multivariable gain and phase margin properties
should also be approximated. With this in mind, consider the
loops for the full-state design and fixed-order controller de-
sign broken at the points marked x in Fig. 2. The loop transfer
properties of both loops are nearly equal when the time re-
sponses of the signals at the return of the loop are approx-
imately equal for a set of identically chosen input signals, with
zero initial conditions on all states in the two feedback sys-
tems.

The return signal in the case of full-state design is

«*=-*% (19)

Referring to Eq. (3), the return signal in the case of fixed-or-
der compensator design is -H°z. Thus, the objective in de-
signing the compensator should be to minimize

yi=K*xs-H°z (20)

for a suitably chosen input and for zero initial conditions.
Here we select the input waveforms as impulses, with magni-
tudes uniformly distributed on the unit sphere. This naturally
leads to selecting the following index of performance:

y=j (21)

Substituting for yi from Eq. (20) and rewriting Eq. (21) in the
form of Eq. (11) lead to the following expressions for the
weighting matrices:

Q[ js*ti(*K K
_ fjOtif* (22)

For zero initial conditions, the effect of the impulses at the
system input is to create an initial condition whose variance
matrix is given by

fflA' 0]
"L 0 oj

(23)

This is used in necessary condition (15) for the distribution on
initial conditions. Note that, unlike the design of a full-order
observer, the design of a fixed-order controller depends on the
gain matrix from the full-state design step. Moreover, this
gain matrix is not implemented as a part of the final controller
(see Fig. 2). From Eqs. (22) and (23), it is apparent that the
proposed loop recovery procedure can be viewed as a rationale
for properly selecting the plant and compensator state weight-
ings and the initial condition distribution matrix.

X0
O

Fig. 3 Geometry of the flexible arm model.

In the preceding formulation, there is no requirement for a
square plant. Also, the usual requirement that the plant be
minimum phase is not explicit. However, it should be noted
that this is not a true asymptotic recovery method in the sense
that perfect recovery will take place in the limit as p ap-
proaches zero. At best, it should be viewed as an approxima-
tion to the case of a full order observer, where nc will play a
limiting factor. The same can be said for the case of full-order
observer design, followed by observer order reduction. These
two design steps are combined here in a single design proce-
dure while maintaining a strictly proper compensator transfer
function. The ability for loop recovery will also be limited if
the plant has right-hand plane zeros, as will be illustrated in
the second of the two examples that follow.

Numerical Results
We present in this section two examples to illustrate the

effectiveness of the design procedure. The first example treats
a structural vibration model that arises in considering the rigid
body and the first flexible mode of a lightweight flexible arm
moving along a predefined path.11 The second example is a
helicopter flight control problem using a tenth-order model
for the fuselage and rotor dynamics.12

Example 1: Lightweight Flexible Arm
The dynamic model of the flexible arm prototype in the

Flexible Automation Laboratory at Georgia Institute of Tech-
nology is used in this example. Figure 3 illustrates the geome-
try from which the model was derived. The arm moves on the
horizontal plane and is stiff with respect to torsional effects.
This flexible beam can also be seen as the last member of an
open kinematic structure whose previous links are rigid. The
derivation of the dynamic model for the flexible beam of Fig.
3 directly follows from Ref. 11. For the example considered
here, the model is reduced to include the rigid body and the
first flexible mode through residualization of the second flex-
ible mode with a frequency equal to 87.5 rad/s. This results in
a direct feedthrough of the input to the output. However, the
form of the model is representative of the general problem of
controller design for rapid pointing of a flexible structure. The
control is motor torque in foot pounds.

The rigid body and the first flexible mode dynamics and
outputs are defined by the following system matrices:

A =

0 1 0
0 0 1

11.92 0 0
-192.9 0 0

1 0 0 0
0 0.28 xlO~ 2 0 0
0 0 1 0

0
0

0.996
-2.151

0
-1.048X10-6

0

(24)
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Fig. 5 Loop phase for full-state and output feedback.

The state variables are x? - [0, 6, 0, 6], where 6 represents the
rigid-body motion (joint angle) in radians and 5 is a nondi-
mensional generalized coordinate representing the flexible mo-
tion of the arm. In the open loop, both the rigid body and the
flexible mode have zero damping with the flexible-mode fre-
quency at 13.9 rad/s. The outputs are joint angle, joint veloc-
ity, and a strain gauge measurement proportional to 6.

First, a full-state feedback design was carried out to damp
the modes. The weighting matrices selected for the full-state
feedback design are

= diag [10, 10, 10, 80], (25)

The full-state feedback design results in a damping ratio of 0.7
in the flexible mode and overdamped rigid-body modes with
the following eigenvalues:

Rigid body mode:
Flexible mode:

- 1.089, -2.618
-9.438 ±9.770j

The gain matrix K* is

K* = [3.162 -28.507 4.434 -8.446] (26)

Next, an output feedback design with second-order com-
pensation was carried out using the procedure described in the
previous section. The weighting matrices Q and R in Eq. (22)
were formulated using the full-state feedback gain matrix of
Eq. (26). The value of p in Eq. (22) was set to l.Ox 1Q-8. The
output feedback design results in a damping ratio of roughly

10

Fig. 6
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Joint angle time history for a step joint angle command input.
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Fig. 7 Tip deflection time history for a step joint angle command
input.

0.75 in the flexible mode, with the gain matrix G being

"-4.27X102 -1.15X108 -7.11X102 \ 2.52xl02

G ' -5.13X102 2.41 xlO6 -5.32X103 | 2.35.x 102

(27)

The closed-loop eigenvalues with this gain matrix are

Rigid-body mode:
Flexible mode:
Compensator:

-0.583 ±0.335j
-9.947 ±8.706j
-4.119, -212.0

A second design was done for p = 0.01. In this case, the damp-
ing of the flexible mode was only 0.1.

Figures 4 and 5 illustrate the recovery of the full-state design
as p is decreased. In addition to providing increased damping
of the flexible mode, the p=10~8 design provides an addi-
tional 35 deg of phase margin at the high-frequency end. The
command tracking performance of the full-state feedback
controller is compared with the output feedback controller in
Figs. 6 and 7. In Fig. 6, the joint angle time history for a step
joint angle command input is shown for the full-state feed-
back design, as well as for the output feedback design. It is
clear from this figure that, in spite of the fact that loop
recovery was designed with the loop broken at the plant input,
the output feedback controller is able to achieve output track-
ing performance close to the full-state feedback case. The
resulting flexible tip deflection is presented in Fig. 7 for the
same step joint angle command input, where the improved
damping for p= 10~8 is evident.
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Example 2: Helicopter Flight Control Problem
A tenth-order model for the Sikorsky S-61 helicopter in

hover flight condition is taken from Ref. 12, where a tight
attitude control system is designed using full-state feedback.
The model consists of fuselage longitudinal velocity, lateral
velocity, pitch attitude, roll attitude, pitch rate, roll rate and
two rigid degrees of freedom for the rotor, with body vertical
and yawing motions decoupled from the rest of the dynamics.
The quadratic performance index used was of the form

1
~2 Jo

(28)

where 6F and <t>F are body pitch and roll attitudes in radians, u
and v are body longitudinal and lateral velocities in feet per
second, and Oc and 6S are lateral and longitudinal cyclic inputs
in radians. Ae and Au are the weightings on the body attitudes
and body velocities, respectively. To obtain a tight attitude
command loop, the weightings on body roll and pitch atti-
tudes were varied from Ae= 1-100. In Ref. 12, it was found
that, in the absence of rotor state feedback, the rotor-mode
response would become unstable as the control loop was tight-
ened, and it was concluded that tight autopilot design should
include rotor state feedback to insure stability of rotor re-
sponse. In Ref. 12, this was accomplished through a full-order
observer design and the resulting system was shown to be
stable even when the attitude loop was tightened.

In this paper, we demonstrate the effectiveness of the new
design procedure using body roll attitude, pitch attitude, roll
rate, and pitch rates as outputs with a fourth-order compensa-
tor for the Ae= 10 case. The observability indices of the com-
pensator are v\ = v2 = 2. The open-loop eigenvalues of the heli-
copter model are:

Mode 1: -14.1 ±38.2j
Mode 2: -13.2 ± 5.2J

rotor nutation
rotor precision

16

g
3

0 Full State Feedback
* Output Feedback

Mode A-
,0=1

-16 -13 -8 -4 0
REAL PART

Fig. 8 Comparison of closed loop modes.

.01 .1 1 10 100
Log Frequency

Fig. 9 Comparison of the minimum singular value plots.

Mode 3: -1.20±0.21 jpitch/roll mode
Mode 4: -0.11 ±0.36j pitch/roll/longitudinal velocity

mode
Mode 5: -0.04 ±0.50jpitch/roll/lateral velocity mode

First, a full-state feedback design was carried out using the
weighting matrices in Ref. 12, for the Ae= 10 case. Using the
gain values from the full-state feedback design, the weighting
matrices Q and R in Eq. (22) were formulated for the output
feedback design with compensator. The eigenvalues of the
body pitch/roll/longitudinal velocity mode, the pitch/roll
mode, and the lower-frequency rotor precision mode are
shown in Fig. 8. The value of p in Eq. (22) is varied from 1.0
to 0.01. Also shown are the full-state feedback design results
for these modes. The rotor nutation mode (not shown) re-
mains well damped and nearly identical to the open loop value
for both designs. Note that mode 2 is departing from the
full-state design value as p is decreased. In this case, the plant
is nonminimum phase. This can be seen by examining the
transfer function from the input to the attitude outputs, which
yields a pair of zeros at (9.01 ±/58.2). Hence, full recovery is
not possible.

Figure 9 illustrates the degree of recovery that does take
place, by comparing the minimum singular value plots of the
return difference matrix for the loop broken at the input to the
plant. Note that the minimum singular value in the vicinity of
the mode 2 frequency does not increase above 0.65. However,
the design procedure does attempt to approximate the perfor-
mance and robustness of a full-state feedback design.

Conclusions
A formulation has been presented for efficiently designing

fixed-order compensators for multivariable linear systems.
The main contribution is that the formulation treats a long-
standing problem in optimal output feedback, that of provid-
ing a rationale for properly selecting the plant and compensa-
tor-state weightings, and the initial condition distribution
matrix, to achieve both performance and robustness. The
examples illustrate the effectiveness of the formulation and
overall design methodology.
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